Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of Novel Classes for Improving Few-Shot Object Detection (2303.10422v1)

Published 18 Mar 2023 in cs.CV and cs.AI

Abstract: Conventional training of deep neural networks requires a large number of the annotated image which is a laborious and time-consuming task, particularly for rare objects. Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class. An unexplored challenge for FSOD is that instances from unlabeled novel classes that do not belong to the fixed set of training classes appear in the background. These objects behave similarly to label noise, leading to FSOD performance degradation. We develop a semi-supervised algorithm to detect and then utilize these unlabeled novel objects as positive samples during training to improve FSOD performance. Specifically, we propose a hierarchical ternary classification region proposal network (HTRPN) to localize the potential unlabeled novel objects and assign them new objectness labels. Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception ability of the object detection model for large objects. Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.