Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS (2303.10090v2)

Published 17 Mar 2023 in nucl-ex and hep-ex

Abstract: Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb${-1}$ of Pb+Pb data and 260 pb${-1}$ of $pp$ data, both at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, with the ATLAS detector. The process $pp \to \gamma$+jet+$X$ and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum ($p_\mathrm{T}$) above $50$ GeV and reported as a function of jet $p_\mathrm{T}$. This selection results in a sample of jets with a steeply falling $p_\mathrm{T}$ distribution that are mostly initiated by the showering of quarks. The $pp$ and Pb+Pb measurements are used to report the nuclear modification factor, $R_\mathrm{AA}$, and the fractional energy loss, $S_\mathrm{loss}$, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The $R_\mathrm{AA}$ and $S_\mathrm{loss}$ values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. “Relativistic Fluid Dynamics In and Out of Equilibrium”, Cambridge Monographs on Mathematical Physics Cambridge University Press, 2019 DOI: 10.1017/9781108651998
  2. “Collective flow and viscosity in relativistic heavy-ion collisions” In Ann. Rev. Nucl. Part. Sci. 63, 2013, pp. 123–151 DOI: 10.1146/annurev-nucl-102212-170540
  3. “The exploration of hot and dense nuclear matter: Introduction to relativistic heavy-ion physics”, 2022 arXiv:2210.12056 [nucl-th]
  4. Leticia Cunqueiro and Anne M. Sickles “Studying the QGP with Jets at the LHC and RHIC” In Prog. Part. Nucl. Phys. 124, 2022, pp. 103940 DOI: 10.1016/j.ppnp.2022.103940
  5. “Glauber modeling in high energy nuclear collisions” In Ann. Rev. Nucl. Part. Sci. 57, 2007, pp. 205–243 DOI: 10.1146/annurev.nucl.57.090506.123020
  6. CMS Collaboration “Measurement of transverse momentum relative to dijet systems in PbPb and p⁢p𝑝𝑝ppitalic_p italic_p collisions at sNN=2.76⁢TeVsubscript𝑠NN2.76TeV\sqrt{s_{\text{NN}}}=2.76\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV” In JHEP 01, 2016, pp. 006 DOI: 10.1007/JHEP01(2016)006
  7. ATLAS Collaboration “Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and p⁢p𝑝𝑝ppitalic_p italic_p collisions at sNN=5.02⁢TeVsubscript𝑠NN5.02TeV\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector” In Phys. Rev. C 100, 2019, pp. 064901 DOI: 10.1103/PhysRevC.100.064901
  8. ATLAS Collaboration “Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at sNN=5.02⁢TeVsubscript𝑠NN5.02TeV\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector” In Phys. Lett. B 790, 2019, pp. 108 DOI: 10.1016/j.physletb.2018.10.076
  9. CMS Collaboration “First measurement of large area jet transverse momentum spectra in heavy-ion collisions” In JHEP 05, 2021, pp. 284 DOI: 10.1007/JHEP05(2021)284
  10. ALICE Collaboration “Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV” In Phys. Rev. C 101.3, 2020, pp. 034911 DOI: 10.1103/PhysRevC.101.034911
  11. K. Kovařík “nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework” In Phys. Rev. D 93.8, 2016, pp. 085037 DOI: 10.1103/PhysRevD.93.085037
  12. “EPPS21: a global QCD analysis of nuclear PDFs” In Eur. Phys. J. C 82.5, 2022, pp. 413 DOI: 10.1140/epjc/s10052-022-10359-0
  13. “nNNPDF3.0: evidence for a modified partonic structure in heavy nuclei” In Eur. Phys. J. C 82.6, 2022, pp. 507 DOI: 10.1140/epjc/s10052-022-10417-7
  14. “Interpreting single jet measurements in Pb +++ Pb collisions at the LHC” In Eur. Phys. J. C 76.2, 2016, pp. 50 DOI: 10.1140/epjc/s10052-016-3896-0
  15. Yacine Mehtar-Tani, Daniel Pablos and Konrad Tywoniuk “Cone-Size Dependence of Jet Suppression in Heavy-Ion Collisions” In Phys. Rev. Lett. 127.25, 2021, pp. 252301 DOI: 10.1103/PhysRevLett.127.252301
  16. “Quenching effects in the cumulative jet spectrum” In JHEP 10, 2021, pp. 038 DOI: 10.1007/JHEP10(2021)038
  17. Weiyao Ke, Yingru Xu and Steffen A. Bass “Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region” In Phys. Rev. C 100.6, 2019, pp. 064911 DOI: 10.1103/PhysRevC.100.064911
  18. Weiyao Ke, Yingru Xu and Steffen A. Bass “Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter” In Phys. Rev. C 98.6, 2018, pp. 064901 DOI: 10.1103/PhysRevC.98.064901
  19. “QGP modification to single inclusive jets in a calibrated transport model” In JHEP 05, 2021, pp. 041 DOI: 10.1007/JHEP05(2021)041
  20. Zhong-Bo Kang, Ivan Vitev and Hongxi Xing “Vector-boson-tagged jet production in heavy ion collisions at energies available at the CERN Large Hadron Collider” In Phys. Rev. C 96.1, 2017, pp. 014912 DOI: 10.1103/PhysRevC.96.014912
  21. Hai Tao Li and Ivan Vitev “Inclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisions” In JHEP 07, 2019, pp. 148 DOI: 10.1007/JHEP07(2019)148
  22. Hai Tao Li and Ivan Vitev “Jet charge modification in dense QCD matter” In Phys. Rev. D 101, 2020, pp. 076020 DOI: 10.1103/PhysRevD.101.076020
  23. “Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions” In Phys. Rev. C 99.5, 2019, pp. 054911 DOI: 10.1103/PhysRevC.99.054911
  24. Jasmine Brewer, Jesse Thaler and Andrew P. Turner “Data-driven quark and gluon jet modification in heavy-ion collisions” In Phys. Rev. C 103.2, 2021, pp. L021901 DOI: 10.1103/PhysRevC.103.L021901
  25. Jasmine Brewer, Quinn Brodsky and Krishna Rajagopal “Disentangling jet modification in jet simulations and in Z+jet data” In JHEP 02, 2022, pp. 175 DOI: 10.1007/JHEP02(2022)175
  26. ATLAS Collaboration “Measurement of the nuclear modification factor of b𝑏bitalic_b-jets in 5.02⁢TeV5.02TeV5.02\,\text{TeV}5.02 TeV Pb+Pb collisions with the ATLAS detector” In Eur. Phys. J. C 83, 2022, pp. 438 DOI: 10.1140/epjc/s10052-023-11427-9
  27. CMS Collaboration “Evidence of b𝑏bitalic_b-Jet Quenching in PbPb Collisions at sNN=2.76⁢TeVsubscript𝑠NN2.76TeV\sqrt{s_{\text{NN}}}=2.76\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV” In Phys. Rev. Lett. 113, 2014, pp. 132301 DOI: 10.1103/PhysRevLett.113.132301
  28. ATLAS Collaboration “Centrality, rapidity and transverse momentum dependence of isolated prompt photon production in lead–lead collisions at sNN=2.76⁢TeVsubscript𝑠NN2.76TeV\sqrt{s_{\text{NN}}}=2.76\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV measured with the ATLAS detector” In Phys. Rev. C 93, 2016, pp. 034914 DOI: 10.1103/PhysRevC.93.034914
  29. CMS Collaboration “The production of isolated photons in PbPb and p⁢p𝑝𝑝ppitalic_p italic_p collisions at sNN=5.02⁢TeVsubscript𝑠NN5.02TeV\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV” In JHEP 07, 2020, pp. 116 DOI: 10.1007/JHEP07(2020)116
  30. ATLAS Collaboration “Measurement of W±superscript𝑊plus-or-minusW^{\pm}italic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT boson production in Pb+Pb collisions at sNN=5.02⁢TeVsubscript𝑠NN5.02TeV\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector” In Eur. Phys. J. C 79, 2019, pp. 935 DOI: 10.1140/epjc/s10052-019-7439-3
  31. CMS Collaboration “Using Z𝑍Zitalic_Z boson events to study parton–medium interactions in PbPb collisions” In Phys. Rev. Lett. 128, 2021, pp. 122301 DOI: 10.1103/PhysRevLett.128.122301
  32. Xin-Nian Wang, Zheng Huang and Ina Sarcevic “Jet quenching in the opposite direction of a tagged photon in high-energy heavy ion collisions” In Phys. Rev. Lett. 77, 1996, pp. 231–234 DOI: 10.1103/PhysRevLett.77.231
  33. ATLAS Collaboration “Measurement of photon-jet transverse momentum correlations in 5.02⁢TeV5.02TeV5.02\,\text{TeV}5.02 TeV Pb+Pb and p⁢p𝑝𝑝ppitalic_p italic_p collisions with ATLAS” In Phys. Lett. B 789, 2019, pp. 167 DOI: 10.1016/j.physletb.2018.12.023
  34. ATLAS Collaboration “Medium-Induced Modification of Z𝑍Zitalic_Z-Tagged Charged Particle Yields in Pb+Pb Collisions at 5.02⁢TeV5.02TeV5.02\,\text{TeV}5.02 TeV with the ATLAS Detector” In Phys. Rev. Lett. 126, 2021, pp. 072301 DOI: 10.1103/PhysRevLett.126.072301
  35. ATLAS Collaboration “Comparison of Fragmentation Functions for Jets Dominated by Light Quarks and Gluons from p⁢p𝑝𝑝ppitalic_p italic_p and Pb+Pb Collisions in ATLAS” In Phys. Rev. Lett. 123, 2019, pp. 042001 DOI: 10.1103/PhysRevLett.123.042001
  36. PHENIX Collaboration “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration” In Nucl. Phys. A 757, 2005, pp. 184–283 DOI: 10.1016/j.nuclphysa.2005.03.086
  37. PHENIX Collaboration “Detailed study of high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT neutral pion suppression and azimuthal anisotropy in Au+Au Collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV” In Phys. Rev. C 76, 2007, pp. 034904 DOI: 10.1103/PhysRevC.76.034904
  38. PHENIX Collaboration “Scaling properties of fractional momentum loss of high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT hadrons in nucleus-nucleus collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG from 62.4 GeV to 2.76 TeV” In Phys. Rev. C 93.2, 2016, pp. 024911 DOI: 10.1103/PhysRevC.93.024911
  39. Jasmine Brewer, José Guilherme Milhano and Jesse Thaler “Sorting out quenched jets” In Phys. Rev. Lett. 122.22, 2019, pp. 222301 DOI: 10.1103/PhysRevLett.122.222301
  40. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  41. ATLAS Collaboration “Performance of the ATLAS trigger system in 2015” In Eur. Phys. J. C 77, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  42. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  43. ATLAS Collaboration “Performance of electron and photon triggers in ATLAS during LHC Run 2” In Eur. Phys. J. C 80, 2020, pp. 47 DOI: 10.1140/epjc/s10052-019-7500-2
  44. ATLAS Collaboration “Prompt and non-prompt J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ and ψ⁢(2⁢S)𝜓2S\psi(2\text{S})italic_ψ ( 2 S ) suppression at high transverse momentum in 5.02⁢TeV5.02TeV5.02\,\text{TeV}5.02 TeV Pb+Pb collisions with the ATLAS experiment” In Eur. Phys. J. C 78, 2018, pp. 762 DOI: 10.1140/epjc/s10052-018-6219-9
  45. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data” In JINST 14, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  46. ATLAS Collaboration “Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead–lead collisions at sNN=2.76⁢TeVsubscript𝑠NN2.76TeV\sqrt{s_{\text{NN}}}=2.76\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS detector” In Phys. Lett. B 719, 2013, pp. 220 DOI: 10.1016/j.physletb.2013.01.024
  47. ATLAS Collaboration “Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016” In Eur. Phys. J. C 79, 2019, pp. 205 DOI: 10.1140/epjc/s10052-019-6650-6
  48. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  49. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet User Manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  50. ATLAS Collaboration “Jet energy measurement and its systematic uncertainty in proton–proton collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In Eur. Phys. J. C 75, 2015, pp. 17 DOI: 10.1140/epjc/s10052-014-3190-y
  51. ATLAS Collaboration “Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 96, 2017, pp. 072002 DOI: 10.1103/PhysRevD.96.072002
  52. ATLAS Collaboration “Jet energy scale and its uncertainty for jets reconstructed using the ATLAS heavy ion jet algorithm”, ATLAS-CONF-2015-016, 2015 URL: https://cds.cern.ch/record/2008677
  53. Torbjorn Sjostrand, Stephen Mrenna and Peter Z. Skands “A brief introduction to PYTHIA 8.1” In Comput. Phys. Commun. 178, 2008, pp. 852–867 DOI: 10.1016/j.cpc.2008.01.036
  54. ATLAS Collaboration “ATLAS Pythia 8 tunes to 7⁢TeV7TeV7\leavevmode\nobreak\ \text{TeV}7 TeV data”, ATL-PHYS-PUB-2014-021, 2014 URL: https://cds.cern.ch/record/1966419
  55. Richard D. Ball “Parton distributions with LHC data” In Nucl. Phys. B 867, 2013, pp. 244–289 DOI: 10.1016/j.nuclphysb.2012.10.003
  56. Enrico Bothmann “Event generation with Sherpa 2.2” In SciPost Phys. 7.3, 2019, pp. 034 DOI: 10.21468/SciPostPhys.7.3.034
  57. Frank Siegert “A practical guide to event generation for prompt photon production with Sherpa” In J. Phys. G 44.4, 2017, pp. 044007 DOI: 10.1088/1361-6471/aa5f29
  58. Richard D. Ball “Parton distributions for the LHC Run II” In JHEP 04, 2015, pp. 040 DOI: 10.1007/JHEP04(2015)040
  59. Johannes Bellm “Herwig 7.0/Herwig++ 3.0 release note” In Eur. Phys. J. C 76.4, 2016, pp. 196 DOI: 10.1140/epjc/s10052-016-4018-8
  60. “Parton distributions in the LHC era: MMHT 2014 PDFs” In Eur. Phys. J. C 75.5, 2015, pp. 204 DOI: 10.1140/epjc/s10052-015-3397-6
  61. S. Agostinelli “GEANT4–a simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250–303 DOI: 10.1016/S0168-9002(03)01368-8
  62. ATLAS Collaboration “Light-quark and gluon jet discrimination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In Eur. Phys. J. C 74, 2014, pp. 3023 DOI: 10.1140/epjc/s10052-014-3023-z
  63. “EPPS16: Nuclear parton distributions with LHC data” In Eur. Phys. J. C 77.3, 2017, pp. 163 DOI: 10.1140/epjc/s10052-017-4725-9
  64. ATLAS Collaboration “Dynamics of isolated-photon plus jet production in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In Nucl. Phys. B 875, 2013, pp. 483 DOI: 10.1016/j.nuclphysb.2013.07.025
  65. ATLAS Collaboration “Measurement of the inclusive isolated prompt photon cross section in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector” In JHEP 08, 2016, pp. 005 DOI: 10.1007/JHEP08(2016)005
  66. ATLAS Collaboration “Measurement of the cross section for inclusive isolated-photon production in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector” In Phys. Lett. B 770, 2017, pp. 473 DOI: 10.1016/j.physletb.2017.04.072
  67. ATLAS Collaboration “Measurement of the inclusive isolated prompt photons cross section in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector using 4.6⁢fb−14.6superscriptfb14.6\,\text{fb}^{-1}4.6 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT” In Phys. Rev. D 89, 2014, pp. 052004 DOI: 10.1103/PhysRevD.89.052004
  68. ATLAS Collaboration “High-ETsubscript𝐸TE_{\text{T}}italic_E start_POSTSUBSCRIPT T end_POSTSUBSCRIPT isolated-photon plus jets production in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector” In Nucl. Phys. B 918, 2017, pp. 257 DOI: 10.1016/j.nuclphysb.2017.03.006
  69. G. D’Agostini “A Multidimensional unfolding method based on Bayes’ theorem” In Nucl. Instrum. Meth. A 362, 1995, pp. 487–498 DOI: 10.1016/0168-9002(95)00274-X
  70. Tim Adye “Unfolding algorithms and tests using RooUnfold” In Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva, Switzerland 17-20 January 2011 Geneva: CERN, 2011, pp. p. 313 CERN DOI: 10.5170/CERN-2011-006.313
  71. ATLAS Collaboration “Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton–proton collision data” In JINST 14, 2019, pp. P03017 DOI: 10.1088/1748-0221/14/03/P03017
  72. ATLAS Collaboration “Measurements of azimuthal anisotropies of jet production in Pb+Pb collisions at sNN=5.02⁢TeVsubscript𝑠NN5.02TeV\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector” In Phys. Rev. C 105, 2021, pp. 064903 DOI: 10.1103/PhysRevC.105.064903
  73. ATLAS Collaboration “Jet energy measurement with the ATLAS detector in proton–proton collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV” In Eur. Phys. J. C 73, 2013, pp. 2304 DOI: 10.1140/epjc/s10052-013-2304-2
  74. ATLAS Collaboration “Jet energy resolution in proton–proton collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV recorded in 2010 with the ATLAS detector” In Eur. Phys. J. C 73, 2013, pp. 2306 DOI: 10.1140/epjc/s10052-013-2306-0
  75. ATLAS Collaboration “Determination of jet calibration and energy resolution in proton–proton collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector” In Eur. Phys. J. C 80, 2020, pp. 1104 DOI: 10.1140/epjc/s10052-020-08477-8
  76. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector at the LHC”, 2022 arXiv:2212.09379 [hep-ex]
  77. ATLAS Collaboration “Measurement of prompt photon production in sNN=8.16⁢TeVsubscript𝑠NN8.16TeV\sqrt{s_{\text{NN}}}=8.16\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV p𝑝pitalic_p+Pb collisions with ATLAS” In Phys. Lett. B 796, 2019, pp. 230 DOI: 10.1016/j.physletb.2019.07.031
  78. Raghav Kunnawalkam Elayavalli and Korinna Christine Zapp “Simulating V+jet processes in heavy ion collisions with JEWEL” In Eur. Phys. J. C 76.12, 2016, pp. 695 DOI: 10.1140/epjc/s10052-016-4534-6
  79. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2021-003, 2021 URL: https://cds.cern.ch/record/2776662
  80. ATLAS Collaboration In Phys. Rev. C 101, 2019, pp. 059903 DOI: 10.1103/PhysRevC.101.059903
Citations (10)

Summary

We haven't generated a summary for this paper yet.