Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Image Reconstruction for Semi-supervised Semantic Segmentation (2303.09794v1)

Published 17 Mar 2023 in cs.CV

Abstract: Autoencoding, which aims to reconstruct the input images through a bottleneck latent representation, is one of the classic feature representation learning strategies. It has been shown effective as an auxiliary task for semi-supervised learning but has become less popular as more sophisticated methods have been proposed in recent years. In this paper, we revisit the idea of using image reconstruction as the auxiliary task and incorporate it with a modern semi-supervised semantic segmentation framework. Surprisingly, we discover that such an old idea in semi-supervised learning can produce results competitive with state-of-the-art semantic segmentation algorithms. By visualizing the intermediate layer activations of the image reconstruction module, we show that the feature map channel could correlate well with the semantic concept, which explains why joint training with the reconstruction task is helpful for the segmentation task. Motivated by our observation, we further proposed a modification to the image reconstruction task, aiming to further disentangle the object clue from the background patterns. From experiment evaluation on various datasets, we show that using reconstruction as auxiliary loss can lead to consistent improvements in various datasets and methods. The proposed method can further lead to significant improvement in object-centric segmentation tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.