Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

SRFormerV2: Taking a Closer Look at Permuted Self-Attention for Image Super-Resolution (2303.09735v2)

Published 17 Mar 2023 in cs.CV

Abstract: Previous works have shown that increasing the window size for Transformer-based image super-resolution models (e.g., SwinIR) can significantly improve the model performance. Still, the computation overhead is also considerable when the window size gradually increases. In this paper, we present SRFormer, a simple but novel method that can enjoy the benefit of large window self-attention but introduces even less computational burden. The core of our SRFormer is the permuted self-attention (PSA), which strikes an appropriate balance between the channel and spatial information for self-attention. Without any bells and whistles, we show that our SRFormer achieves a 33.86dB PSNR score on the Urban100 dataset, which is 0.46dB higher than that of SwinIR but uses fewer parameters and computations. In addition, we also attempt to scale up the model by further enlarging the window size and channel numbers to explore the potential of Transformer-based models. Experiments show that our scaled model, named SRFormerV2, can further improve the results and achieves state-of-the-art. We hope our simple and effective approach could be useful for future research in super-resolution model design. The homepage is https://z-yupeng.github.io/SRFormer/.

Citations (34)

Summary

We haven't generated a summary for this paper yet.