Knowledge Transfer for Pseudo-code Generation from Low Resource Programming Language
Abstract: Generation of pseudo-code descriptions of legacy source code for software maintenance is a manually intensive task. Recent encoder-decoder LLMs have shown promise for automating pseudo-code generation for high resource programming languages such as C++, but are heavily reliant on the availability of a large code-pseudocode corpus. Soliciting such pseudocode annotations for codes written in legacy programming languages (PL) is a time consuming and costly affair requiring a thorough understanding of the source PL. In this paper, we focus on transferring the knowledge acquired by the code-to-pseudocode neural model trained on a high resource PL (C++) using parallel code-pseudocode data. We aim to transfer this knowledge to a legacy PL (C) with no PL-pseudocode parallel data for training. To achieve this, we utilize an Iterative Back Translation (IBT) approach with a novel test-cases based filtration strategy, to adapt the trained C++-to-pseudocode model to C-to-pseudocode model. We observe an improvement of 23.27% in the success rate of the generated C codes through back translation, over the successive IBT iteration, illustrating the efficacy of our approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.