Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Beta-Bernoulli Process Sparse Coding with Deep Neural Networks (2303.08230v1)

Published 14 Mar 2023 in cs.LG and stat.ML

Abstract: Several approximate inference methods have been proposed for deep discrete latent variable models. However, non-parametric methods which have previously been successfully employed for classical sparse coding models have largely been unexplored in the context of deep models. We propose a non-parametric iterative algorithm for learning discrete latent representations in such deep models. Additionally, to learn scale invariant discrete features, we propose local data scaling variables. Lastly, to encourage sparsity in our representations, we propose a Beta-Bernoulli process prior on the latent factors. We evaluate our spare coding model coupled with different likelihood models. We evaluate our method across datasets with varying characteristics and compare our results to current amortized approximate inference methods.

Summary

We haven't generated a summary for this paper yet.