Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solar Power Prediction Using Machine Learning (2303.07875v1)

Published 11 Mar 2023 in cs.LG

Abstract: This paper presents a machine learning-based approach for predicting solar power generation with high accuracy using a 99% AUC (Area Under the Curve) metric. The approach includes data collection, pre-processing, feature selection, model selection, training, evaluation, and deployment. High-quality data from multiple sources, including weather data, solar irradiance data, and historical solar power generation data, are collected and pre-processed to remove outliers, handle missing values, and normalize the data. Relevant features such as temperature, humidity, wind speed, and solar irradiance are selected for model training. Support Vector Machines (SVM), Random Forest, and Gradient Boosting are used as machine learning algorithms to produce accurate predictions. The models are trained on a large dataset of historical solar power generation data and other relevant features. The performance of the models is evaluated using AUC and other metrics such as precision, recall, and F1-score. The trained machine learning models are then deployed in a production environment, where they can be used to make real-time predictions about solar power generation. The results show that the proposed approach achieves a 99% AUC for solar power generation prediction, which can help energy companies better manage their solar power systems, reduce costs, and improve energy efficiency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.