Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Efficient Control Barrier Function Refinement (2303.05973v1)

Published 10 Mar 2023 in eess.SY and cs.SY

Abstract: Control barrier functions (CBFs) have been widely used for synthesizing controllers in safety-critical applications. When used as a safety filter, it provides a simple and computationally efficient way to obtain safe controls from a possibly unsafe performance controller. Despite its conceptual simplicity, constructing a valid CBF is well known to be challenging, especially for high-relative degree systems under nonconvex constraints. Recently, work has been done to learn a valid CBF from data based on a handcrafted CBF (HCBF). Even though the HCBF gives a good initialization point, it still requires a large amount of data to train the CBF network. In this work, we propose a new method to learn more efficiently from the collected data through a novel prioritized data sampling strategy. A priority score is computed from the loss value of each data point. Then, a probability distribution based on the priority score of the data points is used to sample data and update the learned CBF. Using our proposed approach, we can learn a valid CBF that recovers a larger portion of the true safe set using a smaller amount of data. The effectiveness of our method is demonstrated in simulation on a unicycle and a two-link arm.

Citations (12)

Summary

We haven't generated a summary for this paper yet.