Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Connecting the Dots: Context-Driven Motion Planning Using Symbolic Reasoning (2303.04191v1)

Published 7 Mar 2023 in math.OC

Abstract: The introduction of highly automated vehicles on the public road may improve safety and comfort, although its success will depend on social acceptance. This requires trajectory planning methods that provide safe, proactive, and comfortable trajectories that are risk-averse, take into account predictions of other road users, and comply with traffic rules, social norms, and contextual information. To consider these criteria, in this article, we propose a non-linear model-predictive trajectory generator. The problem space is populated with risk fields. These fields are constructed using a novel application of a knowledge graph, which uses a traffic-oriented ontology to reason about the risk of objects and infrastructural elements, depending on their position, relative velocity, and classification, as well as depending on the implicit context, driven by, e.g., social norms or traffic rules. Through this novel combination, an adaptive trajectory generator is formulated which is validated in simulation through 4 use cases and 309 variations and is shown to comply with the relevant social norms, while taking minimal risk and progressing towards a goal area.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.