Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guided Image-to-Image Translation by Discriminator-Generator Communication (2303.03598v1)

Published 7 Mar 2023 in cs.CV and eess.IV

Abstract: The goal of Image-to-image (I2I) translation is to transfer an image from a source domain to a target domain, which has recently drawn increasing attention. One major branch of this research is to formulate I2I translation based on Generative Adversarial Network (GAN). As a zero-sum game, GAN can be reformulated as a Partially-observed Markov Decision Process (POMDP) for generators, where generators cannot access full state information of their environments. This formulation illustrates the information insufficiency in the GAN training. To mitigate this problem, we propose to add a communication channel between discriminators and generators. We explore multiple architecture designs to integrate the communication mechanism into the I2I translation framework. To validate the performance of the proposed approach, we have conducted extensive experiments on various benchmark datasets. The experimental results confirm the superiority of our proposed method.

Summary

We haven't generated a summary for this paper yet.