Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Accurate Range Counting on Privacy-preserving Spatial Data Federation [Technical Report] (2303.02842v1)

Published 6 Mar 2023 in cs.DB

Abstract: A spatial data federation is a collection of data owners (e.g., a consortium of taxi companies), and collectively it could provide better location-based services (LBS). For example, car-hailing services over a spatial data federation allow end users to easily pick the best offers. We focus on the range counting queries, which are primitive operations in spatial databases but received little attention in related research, especially considering the privacy requirements from data owners, who are reluctant to disclose their proprietary data. We propose a grouping-based technical framework named FedGroup, which groups data owners without compromising privacy, and achieves superior query accuracy (up to 50% improvement) as compared to directly applying existing privacy mechanisms achieving Differential Privacy (DP). Our experimental results also demonstrate that FedGroup runs orders-of-magnitude faster than traditional Secure Multiparty Computation (MPC) based method, and FedGroup even scales to millions of data owners, which is a common setting in the era of ubiquitous mobile devices.

Summary

We haven't generated a summary for this paper yet.