Papers
Topics
Authors
Recent
2000 character limit reached

Securing Biomedical Images from Unauthorized Training with Anti-Learning Perturbation

Published 5 Mar 2023 in cs.LG, cs.CR, cs.CV, and eess.IV | (2303.02559v1)

Abstract: The volume of open-source biomedical data has been essential to the development of various spheres of the healthcare community since more free' data can provide individual researchers more chances to contribute. However, institutions often hesitate to share their data with the public due to the risk of data exploitation by unauthorized third parties for another commercial usage (e.g., training AI models). This phenomenon might hinder the development of the whole healthcare research community. To address this concern, we propose a novel approach termedunlearnable biomedical image' for protecting biomedical data by injecting imperceptible but delusive noises into the data, making them unexploitable for AI models. We formulate the problem as a bi-level optimization and propose three kinds of anti-learning perturbation generation approaches to solve the problem. Our method is an important step toward encouraging more institutions to contribute their data for the long-term development of the research community.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.