Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algorithmic Randomness and Probabilistic Laws

Published 2 Mar 2023 in physics.hist-ph, cs.CC, math.PR, and quant-ph | (2303.01411v1)

Abstract: We consider two ways one might use algorithmic randomness to characterize a probabilistic law. The first is a generative chance* law. Such laws involve a nonstandard notion of chance. The second is a probabilistic* constraining law. Such laws impose relative frequency and randomness constraints that every physically possible world must satisfy. While each notion has virtues, we argue that the latter has advantages over the former. It supports a unified governing account of non-Humean laws and provides independently motivated solutions to issues in the Humean best-system account. On both notions, we have a much tighter connection between probabilistic laws and their corresponding sets of possible worlds. Certain histories permitted by traditional probabilistic laws are ruled out as physically impossible. As a result, such laws avoid one variety of empirical underdetermination, but the approach reveals other varieties of underdetermination that are typically overlooked.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.