Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Coarse to Fine Framework for Object Detection in High Resolution Image (2303.01219v1)

Published 2 Mar 2023 in cs.CV and cs.AI

Abstract: Object detection is a fundamental problem in computer vision, aiming at locating and classifying objects in image. Although current devices can easily take very high-resolution images, current approaches of object detection seldom consider detecting tiny object or the large scale variance problem in high resolution images. In this paper, we introduce a simple yet efficient approach that improves accuracy of object detection especially for small objects and large scale variance scene while reducing the computational cost in high resolution image. Inspired by observing that overall detection accuracy is reduced if the image is properly down-sampled but the recall rate is not significantly reduced. Besides, small objects can be better detected by inputting high-resolution images even if using lightweight detector. We propose a cluster-based coarse-to-fine object detection framework to enhance the performance for detecting small objects while ensure the accuracy of large objects in high-resolution images. For the first stage, we perform coarse detection on the down-sampled image and center localization of small objects by lightweight detector on high-resolution image, and then obtains image chips based on cluster region generation method by coarse detection and center localization results, and further sends chips to the second stage detector for fine detection. Finally, we merge the coarse detection and fine detection results. Our approach can make good use of the sparsity of the objects and the information in high-resolution image, thereby making the detection more efficient. Experiment results show that our proposed approach achieves promising performance compared with other state-of-the-art detectors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.