Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Effective Crop-Paste Pipeline for Few-shot Object Detection (2302.14452v2)

Published 28 Feb 2023 in cs.CV

Abstract: Few-shot object detection (FSOD) aims to expand an object detector for novel categories given only a few instances for training. However, detecting novel categories with only a few samples usually leads to the problem of misclassification. In FSOD, we notice the false positive (FP) of novel categories is prominent, in which the base categories are often recognized as novel ones. To address this issue, a novel data augmentation pipeline that Crops the Novel instances and Pastes them on the selected Base images, called CNPB, is proposed. There are two key questions to be answered: (1) How to select useful base images? and (2) How to combine novel and base data? We design a multi-step selection strategy to find useful base data. Specifically, we first discover the base images which contain the FP of novel categories and select a certain amount of samples from them for the base and novel categories balance. Then the bad cases, such as the base images that have unlabeled ground truth or easily confused base instances, are removed by using CLIP. Finally, the same category strategy is adopted, in which a novel instance with category n is pasted on the base image with the FP of n. During combination, a novel instance is cropped and randomly down-sized, and thus pasted at the assigned optimal location from the randomly generated candidates in a selected base image. Our method is simple yet effective and can be easy to plug into existing FSOD methods, demonstrating significant potential for use. Extensive experiments on PASCAL VOC and MS COCO validate the effectiveness of our method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.