Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Large Neighborhood Search for Vehicle Routing in Airport Ground Handling (2302.13797v1)

Published 27 Feb 2023 in cs.AI and cs.LG

Abstract: Dispatching vehicle fleets to serve flights is a key task in airport ground handling (AGH). Due to the notable growth of flights, it is challenging to simultaneously schedule multiple types of operations (services) for a large number of flights, where each type of operation is performed by one specific vehicle fleet. To tackle this issue, we first represent the operation scheduling as a complex vehicle routing problem and formulate it as a mixed integer linear programming (MILP) model. Then given the graph representation of the MILP model, we propose a learning assisted large neighborhood search (LNS) method using data generated based on real scenarios, where we integrate imitation learning and graph convolutional network (GCN) to learn a destroy operator to automatically select variables, and employ an off-the-shelf solver as the repair operator to reoptimize the selected variables. Experimental results based on a real airport show that the proposed method allows for handling up to 200 flights with 10 types of operations simultaneously, and outperforms state-of-the-art methods. Moreover, the learned method performs consistently accompanying different solvers, and generalizes well on larger instances, verifying the versatility and scalability of our method.

Citations (15)

Summary

We haven't generated a summary for this paper yet.