Memory-augmented Contrastive Learning for Talking Head Generation
Abstract: Given one reference facial image and a piece of speech as input, talking head generation aims to synthesize a realistic-looking talking head video. However, generating a lip-synchronized video with natural head movements is challenging. The same speech clip can generate multiple possible lip and head movements, that is, there is no one-to-one mapping relationship between them. To overcome this problem, we propose a Speech Feature Extractor (SFE) based on memory-augmented self-supervised contrastive learning, which introduces the memory module to store multiple different speech mapping results. In addition, we introduce the Mixed Density Networks (MDN) into the landmark regression task to generate multiple predicted facial landmarks. Extensive qualitative and quantitative experiments show that the quality of our facial animation is significantly superior to that of the state-of-the-art (SOTA). The code has been released at https://github.com/Yaxinzhao97/MACL.git.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.