Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An accurate and efficient approach to probabilistic conflict prediction (2302.13413v1)

Published 26 Feb 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Conflict prediction is a vital component of path planning for autonomous vehicles. Prediction methods must be accurate for reliable navigation, but also computationally efficient to enable online path planning. Efficient prediction methods are especially crucial when testing large sets of candidate trajectories. We present a prediction method that has the same accuracy as existing methods, but up to an order of magnitude faster. This is achieved by rewriting the conflict prediction problem in terms of the first-passage time distribution using a dimension-reduction transform. First-passage time distributions are analytically derived for a subset of Gaussian processes describing vehicle motion. The proposed method is applicable to 2-D stochastic processes where the mean can be approximated by line segments, and the conflict boundary can be approximated by piece-wise straight lines. The proposed method was tested in simulation and compared to two probability flow methods, as well as a recent instantaneous conflict probability method. The results demonstrate a significant decrease of computation time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.