Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrast-PLC: Contrastive Learning for Packet Loss Concealment (2302.13284v1)

Published 26 Feb 2023 in cs.SD and eess.AS

Abstract: Packet loss concealment (PLC) is challenging in concealing missing contents both plausibly and naturally when there are only limited available context to use. Recently deep-learning based PLC algorithms have demonstrated their superiority over traditional counterparts; but their concealment ability is still mostly limited to a maximum of 120ms loss. Even with strong GAN-based generative models, it is still very challenging to predict long burst losses that could happen within/in-between phonemes. In this paper, we propose to use contrastive learning to learn a loss-robust semantic representation for PLC. A hybrid neural PLC architecture combining the semantic prediction and GAN-based generative model is designed to verify its effectiveness. Results on the blind test set of Interspeech2022 PLC Challenge show its superiority over commonly used UNet-style framework and the one without contrastive learning, especially for the longer burst loss at (120, 220] ms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.