Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mingling or Misalignment? Temporal Shift for Speech Emotion Recognition with Pre-trained Representations (2302.13277v2)

Published 26 Feb 2023 in cs.SD and eess.AS

Abstract: Fueled by recent advances of self-supervised models, pre-trained speech representations proved effective for the downstream speech emotion recognition (SER) task. Most prior works mainly focus on exploiting pre-trained representations and just adopt a linear head on top of the pre-trained model, neglecting the design of the downstream network. In this paper, we propose a temporal shift module to mingle channel-wise information without introducing any parameter or FLOP. With the temporal shift module, three designed baseline building blocks evolve into corresponding shift variants, i.e. ShiftCNN, ShiftLSTM, and Shiftformer. Moreover, to balance the trade-off between mingling and misalignment, we propose two technical strategies, placement of shift and proportion of shift. The family of temporal shift models all outperforms the state-of-the-art methods on the benchmark IEMOCAP dataset under both finetuning and feature extraction settings. Our code is available at https://github.com/ECNU-Cross-Innovation-Lab/ShiftSER.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siyuan Shen (22 papers)
  2. Feng Liu (1212 papers)
  3. Aimin Zhou (43 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.