Papers
Topics
Authors
Recent
Search
2000 character limit reached

SynGen: A Syntactic Plug-and-play Module for Generative Aspect-based Sentiment Analysis

Published 25 Feb 2023 in cs.CL and cs.AI | (2302.13032v1)

Abstract: Aspect-based Sentiment Analysis (ABSA) is a sentiment analysis task at fine-grained level. Recently, generative frameworks have attracted increasing attention in ABSA due to their ability to unify subtasks and their continuity to upstream pre-training tasks. However, these generative models suffer from the neighboring dependency problem that induces neighboring words to get higher attention. In this paper, we propose SynGen, a plug-and-play syntactic information aware module. As a plug-in module, our SynGen can be easily applied to any generative framework backbones. The key insight of our module is to add syntactic inductive bias to attention assignment and thus direct attention to the correct target words. To the best of our knowledge, we are the first one to introduce syntactic information to generative ABSA frameworks. Our module design is based on two main principles: (1) maintaining the structural integrity of backbone PLMs and (2) disentangling the added syntactic information and original semantic information. Empirical results on four popular ABSA datasets demonstrate that SynGen enhanced model achieves a comparable performance to the state-of-the-art model with relaxed labeling specification and less training consumption.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.