Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems (2302.12918v1)

Published 24 Feb 2023 in cs.LG

Abstract: Our work focuses on anomaly detection in cyber-physical systems. Prior literature has three limitations: (1) Failing to capture long-delayed patterns in system anomalies; (2) Ignoring dynamic changes in sensor connections; (3) The curse of high-dimensional data samples. These limit the detection performance and usefulness of existing works. To address them, we propose a new approach called deep graph stream support vector data description (SVDD) for anomaly detection. Specifically, we first use a transformer to preserve both short and long temporal patterns of monitoring data in temporal embeddings. Then we cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph. The temporal embeddings are mapped to the new graph as node attributes to form weighted attributed graph. We input the graph into a variational graph auto-encoder model to learn final spatio-temporal representation. Finally, we learn a hypersphere that encompasses normal embeddings and predict the system status by calculating the distances between the hypersphere and data samples. Extensive experiments validate the superiority of our model, which improves F1-score by 35.87%, AUC by 19.32%, while being 32 times faster than the best baseline at training and inference.

Citations (1)

Summary

We haven't generated a summary for this paper yet.