Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality (2403.09039v2)

Published 14 Mar 2024 in cs.LG and cs.AI

Abstract: Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes. The conventional approaches that tackle this problem typically employ an unsupervised learning framework, capturing normality patterns with exclusive normal data during training and identifying deviations as anomalies during testing. However, these methods face critical drawbacks: they either only depend on proxy tasks for representation without directly pinpointing normal patterns, or they neglect to differentiate between spatial and temporal normality patterns. More recent methods that use contrastive learning with negative sampling also face high computational costs, limiting their scalability to large graphs. To address these challenges, we introduce a novel Spatial-Temporal memories-enhanced graph autoencoder (STRIPE). Initially, STRIPE employs Graph Neural Networks (GNNs) and gated temporal convolution layers to extract spatial and temporal features. Then STRIPE incorporates separate spatial and temporal memory networks to capture and store prototypes of normal patterns, respectively. These stored patterns are retrieved and integrated with encoded graph embeddings through a mutual attention mechanism. Finally, the integrated features are fed into the decoder to reconstruct the graph streams which serve as the proxy task for anomaly detection. This comprehensive approach not only minimizes reconstruction errors but also emphasizes the compactness and distinctiveness of the embeddings w.r.t. the nearest memory prototypes. Extensive experiments on six benchmark datasets demonstrate the effectiveness and efficiency of STRIPE, where STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. X. Han, T. Grubenmann, R. Cheng, S. C. Wong, X. Li, and W. Sun, “Traffic incident detection: A trajectory-based approach,” in 2020 IEEE 36th International Conference on Data Engineering (ICDE).   IEEE, 2020, pp. 1866–1869.
  2. L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: Anomaly detection in dynamic graph using attention-based temporal gcn.” in IJCAI, vol. 3, 2019, p. 7.
  3. J. Zhang, M. Gao, J. Yu, L. Guo, J. Li, and H. Yin, “Double-scale self-supervised hypergraph learning for group recommendation,” in Proceedings of the 30th ACM international conference on information & knowledge management, 2021, pp. 2557–2567.
  4. B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li, “Keyword-aware continuous knn query on road networks,” in 2016 IEEE 32Nd international conference on data engineering (ICDE).   IEEE, 2016, pp. 871–882.
  5. S. Ranshous, S. Harenberg, K. Sharma, and N. F. Samatova, “A scalable approach for outlier detection in edge streams using sketch-based approximations,” in Proceedings of the 2016 SIAM international conference on data mining.   SIAM, 2016, pp. 189–197.
  6. W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang, “Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 2672–2681.
  7. Y. Yang, H. Yin, J. Cao, T. Chen, Q. V. H. Nguyen, X. Zhou, and L. Chen, “Time-aware dynamic graph embedding for asynchronous structural evolution,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  8. X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A comprehensive survey on graph anomaly detection with deep learning,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  9. Y. Wang, J. Zhang, S. Guo, H. Yin, C. Li, and H. Chen, “Decoupling representation learning and classification for gnn-based anomaly detection,” in Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, 2021, pp. 1239–1248.
  10. J. Liu, M. He, X. Shang, J. Shi, B. Cui, and H. Yin, “Bourne: Bootstrapped self-supervised learning framework for unified graph anomaly detection,” arXiv preprint arXiv:2307.15244, 2023.
  11. Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed networks via contrastive self-supervised learning,” IEEE transactions on neural networks and learning systems, vol. 33, no. 6, pp. 2378–2392, 2021.
  12. X. Teng, Y.-R. Lin, and X. Wen, “Anomaly detection in dynamic networks using multi-view time-series hypersphere learning,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 827–836.
  13. P. Zheng, S. Yuan, X. Wu, J. Li, and A. Lu, “One-class adversarial nets for fraud detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 1286–1293.
  14. L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen, “Structural temporal graph neural networks for anomaly detection in dynamic graphs,” in Proceedings of the 30th ACM international conference on Information & Knowledge Management, 2021, pp. 3747–3756.
  15. J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv preprint arXiv:1410.3916, 2014.
  16. T. Ji, D. Yang, and J. Gao, “Incremental local evolutionary outlier detection for dynamic social networks,” in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II 13.   Springer, 2013, pp. 1–15.
  17. J. Liu, L. Song, G. Wang, and X. Shang, “Meta-hgt: Metapath-aware hypergraph transformer for heterogeneous information network embedding,” Neural Networks, vol. 157, pp. 65–76, 2023.
  18. J. Liu, M. He, G. Wang, N. Q. V. Hung, X. Shang, and H. Yin, “Imbalanced node classification beyond homophilic assumption,” arXiv preprint arXiv:2304.14635, 2023.
  19. C. C. Aggarwal, Y. Zhao, and S. Y. Philip, “Outlier detection in graph streams,” in 2011 IEEE 27th international conference on data engineering, IEEE.   IEEE, 2011, pp. 399–409.
  20. K. Sricharan and K. Das, “Localizing anomalous changes in time-evolving graphs,” in Proceedings of the 2014 ACM SIGMOD international conference on Management of data, 2014, pp. 1347–1358.
  21. E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient anomaly detection in streaming heterogeneous graphs,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1035–1044.
  22. Z. Chen, W. Hendrix, and N. F. Samatova, “Community-based anomaly detection in evolutionary networks,” Journal of Intelligent Information Systems, vol. 39, no. 1, pp. 59–85, 2012.
  23. D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “Spotlight: Detecting anomalies in streaming graphs,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1378–1386.
  24. S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory networks,” Advances in neural information processing systems, vol. 28, 2015.
  25. Y. Kim, M. Kim, and G. Kim, “Memorization precedes generation: Learning unsupervised gans with memory networks,” in International Conference on Learning Representations, 2018.
  26. Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-parametric instance discrimination,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3733–3742.
  27. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with memory-augmented neural networks,” in International conference on machine learning.   PMLR, 2016, pp. 1842–1850.
  28. Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei, “Memory matching networks for one-shot image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4080–4088.
  29. M. Zhu, P. Pan, W. Chen, and Y. Yang, “Dm-gan: Dynamic memory generative adversarial networks for text-to-image synthesis,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 5802–5810.
  30. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” Advances in neural information processing systems, vol. 19, 2006.
  31. T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308, 2016.
  32. D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1705–1714.
  33. H. Park, J. Noh, and B. Ham, “Learning memory-guided normality for anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 14 372–14 381.
  34. C. Niu, G. Pang, and L. Chen, “Graph-level anomaly detection via hierarchical memory networks,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases.   Springer, 2023, pp. 201–218.
  35. Y. Liu, J. Liu, M. Zhao, D. Yang, X. Zhu, and L. Song, “Learning appearance-motion normality for video anomaly detection,” in 2022 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2022, pp. 1–6.
  36. K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on attributed networks,” in Proceedings of the 2019 SIAM International Conference on Data Mining.   SIAM, 2019, pp. 594–602.
  37. Y. Zheng, M. Jin, Y. Liu, L. Chi, K. T. Phan, and Y.-P. P. Chen, “Generative and contrastive self-supervised learning for graph anomaly detection,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  38. J. Duan, S. Wang, P. Zhang, E. Zhu, J. Hu, H. Jin, Y. Liu, and Z. Dong, “Graph anomaly detection via multi-scale contrastive learning networks with augmented view,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, 2023, pp. 7459–7467.

Summary

We haven't generated a summary for this paper yet.