Papers
Topics
Authors
Recent
Search
2000 character limit reached

Revisiting the SFR-Mass relation at z=0 with detailed deep learning based morphologies

Published 23 Feb 2023 in astro-ph.GA | (2302.12265v1)

Abstract: Galaxy morphology is a key parameter in galaxy evolution studies. The enormous number of galaxies which current and future surveys will observe demand of automated methods for morphological classification. Supervised learning techniques have been successfully used for the morphological classification of galaxies from different datasets, including Sloan Digital Sky Survey (SDSS), Mapping Galaxies with Apache Point Observatory (MaNGA) or Dark Energy Survey (DES). With these proceedings, we release the morphological catalogue for a sample of 670,000 SDSS galaxies based on the deep learning models trained on SDSS RGB images with morphological labels from human-based classification catalogues. The released catalogue includes binary classifications (early-type versus late-type, elliptical versus lenticular, identification of edge-on and barred galaxies) plus a T-Type. The classifications also include k-fold based uncertainties. This is, as of today, the largest catalogue including a T-Type classification. As an example of the scientific potential of this classification, we show how the location of the galaxies in the star formation - stellar mass plane (SFR-M${*}$) depends on morphology. This is the first time the SFR-M${*}$ relation is combined with T-Type information for such a large sample of galaxies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.