Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving galaxy morphologies for SDSS with Deep Learning (1711.05744v2)

Published 15 Nov 2017 in astro-ph.GA

Abstract: We present a morphological catalogue for $\sim$ 670,000 galaxies in the Sloan Digital Sky Survey in two flavours: T-Type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-Types and a series of GZ2 type questions (disk/features, edge-on galaxies, bar signature, bulge prominence, roundness and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from S0, where the T-Type model is not so efficient. For the T-Type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (> 97\%), precision and recall values (> 90\%) when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.

Summary

We haven't generated a summary for this paper yet.