Papers
Topics
Authors
Recent
Search
2000 character limit reached

Model-based feature selection for neural networks: A mixed-integer programming approach

Published 20 Feb 2023 in math.OC and cs.LG | (2302.10344v1)

Abstract: In this work, we develop a novel input feature selection framework for ReLU-based deep neural networks (DNNs), which builds upon a mixed-integer optimization approach. While the method is generally applicable to various classification tasks, we focus on finding input features for image classification for clarity of presentation. The idea is to use a trained DNN, or an ensemble of trained DNNs, to identify the salient input features. The input feature selection is formulated as a sequence of mixed-integer linear programming (MILP) problems that find sets of sparse inputs that maximize the classification confidence of each category. These ''inverse'' problems are regularized by the number of inputs selected for each category and by distribution constraints. Numerical results on the well-known MNIST and FashionMNIST datasets show that the proposed input feature selection allows us to drastically reduce the size of the input to $\sim$15\% while maintaining a good classification accuracy. This allows us to design DNNs with significantly fewer connections, reducing computational effort and producing DNNs that are more robust towards adversarial attacks.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.