Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SkillRec: A Data-Driven Approach to Job Skill Recommendation for Career Insights (2302.09938v1)

Published 20 Feb 2023 in cs.AI, cs.LG, and cs.SI

Abstract: Understanding the skill sets and knowledge required for any career is of utmost importance, but it is increasingly challenging in today's dynamic world with rapid changes in terms of the tools and techniques used. Thus, it is especially important to be able to accurately identify the required skill sets for any job for better career insights and development. In this paper, we propose and develop the Skill Recommendation (SkillRec) system for recommending the relevant job skills required for a given job based on the job title. SkillRec collects and identify the skill set required for a job based on the job descriptions published by companies hiring for these roles. In addition to the data collection and pre-processing capabilities, SkillRec also utilises word/sentence embedding techniques for job title representation, alongside a feed-forward neural network for job skill recommendation based on the job title representation. Based on our preliminary experiments on a dataset of 6,000 job titles and descriptions, SkillRec shows a promising performance in terms of accuracy and F1-score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiang Qian Ong (1 paper)
  2. Kwan Hui Lim (39 papers)
Citations (4)