Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization Methods in Deep Learning: A Comprehensive Overview (2302.09566v2)

Published 19 Feb 2023 in cs.LG and math.OC

Abstract: In recent years, deep learning has achieved remarkable success in various fields such as image recognition, natural language processing, and speech recognition. The effectiveness of deep learning largely depends on the optimization methods used to train deep neural networks. In this paper, we provide an overview of first-order optimization methods such as Stochastic Gradient Descent, Adagrad, Adadelta, and RMSprop, as well as recent momentum-based and adaptive gradient methods such as Nesterov accelerated gradient, Adam, Nadam, AdaMax, and AMSGrad. We also discuss the challenges associated with optimization in deep learning and explore techniques for addressing these challenges, including weight initialization, batch normalization, and layer normalization. Finally, we provide recommendations for selecting optimization methods for different deep learning tasks and datasets. This paper serves as a comprehensive guide to optimization methods in deep learning and can be used as a reference for researchers and practitioners in the field.

Citations (4)

Summary

We haven't generated a summary for this paper yet.