Papers
Topics
Authors
Recent
2000 character limit reached

Interpretability in Activation Space Analysis of Transformers: A Focused Survey

Published 22 Jan 2023 in cs.CL and cs.AI | (2302.09304v1)

Abstract: The field of natural language processing has reached breakthroughs with the advent of transformers. They have remained state-of-the-art since then, and there also has been much research in analyzing, interpreting, and evaluating the attention layers and the underlying embedding space. In addition to the self-attention layers, the feed-forward layers in the transformer are a prominent architectural component. From extensive research, we observe that its role is under-explored. We focus on the latent space, known as the Activation Space, that consists of the neuron activations from these feed-forward layers. In this survey paper, we review interpretability methods that examine the learnings that occurred in this activation space. Since there exists only limited research in this direction, we conduct a detailed examination of each work and point out potential future directions of research. We hope our work provides a step towards strengthening activation space analysis.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.