Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretability in Activation Space Analysis of Transformers: A Focused Survey (2302.09304v1)

Published 22 Jan 2023 in cs.CL and cs.AI

Abstract: The field of natural language processing has reached breakthroughs with the advent of transformers. They have remained state-of-the-art since then, and there also has been much research in analyzing, interpreting, and evaluating the attention layers and the underlying embedding space. In addition to the self-attention layers, the feed-forward layers in the transformer are a prominent architectural component. From extensive research, we observe that its role is under-explored. We focus on the latent space, known as the Activation Space, that consists of the neuron activations from these feed-forward layers. In this survey paper, we review interpretability methods that examine the learnings that occurred in this activation space. Since there exists only limited research in this direction, we conduct a detailed examination of each work and point out potential future directions of research. We hope our work provides a step towards strengthening activation space analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Soniya Vijayakumar (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.