Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robot path planning using deep reinforcement learning (2302.09120v2)

Published 17 Feb 2023 in cs.RO and cs.AI

Abstract: Autonomous navigation is challenging for mobile robots, especially in an unknown environment. Commonly, the robot requires multiple sensors to map the environment, locate itself, and make a plan to reach the target. However, reinforcement learning methods offer an alternative to map-free navigation tasks by learning the optimal actions to take. In this article, deep reinforcement learning agents are implemented using variants of the deep Q networks method, the D3QN and rainbow algorithms, for both the obstacle avoidance and the goal-oriented navigation task. The agents are trained and evaluated in a simulated environment. Furthermore, an analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (3)

Summary

We haven't generated a summary for this paper yet.