Papers
Topics
Authors
Recent
Search
2000 character limit reached

Skew-Normal Posterior Approximations

Published 16 Feb 2023 in stat.ME | (2302.08614v1)

Abstract: Many approximate Bayesian inference methods assume a particular parametric form for approximating the posterior distribution. A multivariate Gaussian distribution provides a convenient density for such approaches; examples include the Laplace, penalized quasi-likelihood, Gaussian variational, and expectation propagation methods. Unfortunately, these all ignore the potential skewness of the posterior distribution. We propose a modification that accounts for skewness, where key statistics of the posterior distribution are matched instead to a multivariate skew-normal distribution. A combination of simulation studies and benchmarking were conducted to compare the performance of this skew-normal matching method (both as a standalone approximation and as a post-hoc skewness adjustment) with existing Gaussian and skewed approximations. We show empirically that for small and moderate dimensional cases, skew-normal matching can be much more accurate than these other approaches. For post-hoc skewness adjustments, this comes at very little cost in additional computational time.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.