Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conjugate Bayes for probit regression via unified skew-normal distributions (1802.09565v5)

Published 26 Feb 2018 in stat.ME and stat.CO

Abstract: Regression models for dichotomous data are ubiquitous in statistics. Besides being useful for inference on binary responses, these methods serve also as building blocks in more complex formulations, such as density regression, nonparametric classification and graphical models. Within the Bayesian framework, inference proceeds by updating the priors for the coefficients, typically set to be Gaussians, with the likelihood induced by probit or logit regressions for the responses. In this updating, the apparent absence of a tractable posterior has motivated a variety of computational methods, including Markov Chain Monte Carlo routines and algorithms which approximate the posterior. Despite being routinely implemented, Markov Chain Monte Carlo strategies face mixing or time-inefficiency issues in large p and small n studies, whereas approximate routines fail to capture the skewness typically observed in the posterior. This article proves that the posterior distribution for the probit coefficients has a unified skew-normal kernel, under Gaussian priors. Such a novel result allows efficient Bayesian inference for a wide class of applications, especially in large p and small-to-moderate n studies where state-of-the-art computational methods face notable issues. These advances are outlined in a genetic study, and further motivate the development of a wider class of conjugate priors for probit models along with methods to obtain independent and identically distributed samples from the unified skew-normal posterior.

Summary

We haven't generated a summary for this paper yet.