Papers
Topics
Authors
Recent
2000 character limit reached

WHC: Weighted Hybrid Criterion for Filter Pruning on Convolutional Neural Networks

Published 16 Feb 2023 in cs.CV and cs.AI | (2302.08185v1)

Abstract: Filter pruning has attracted increasing attention in recent years for its capacity in compressing and accelerating convolutional neural networks. Various data-independent criteria, including norm-based and relationship-based ones, were proposed to prune the most unimportant filters. However, these state-of-the-art criteria fail to fully consider the dissimilarity of filters, and thus might lead to performance degradation. In this paper, we first analyze the limitation of relationship-based criteria with examples, and then introduce a new data-independent criterion, Weighted Hybrid Criterion (WHC), to tackle the problems of both norm-based and relationship-based criteria. By taking the magnitude of each filter and the linear dependence between filters into consideration, WHC can robustly recognize the most redundant filters, which can be safely pruned without introducing severe performance degradation to networks. Extensive pruning experiments in a simple one-shot manner demonstrate the effectiveness of the proposed WHC. In particular, WHC can prune ResNet-50 on ImageNet with more than 42% of floating point operations reduced without any performance loss in top-5 accuracy.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.