Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning Based Power Grid Day-Ahead Planning and AI-Assisted Control (2302.07654v1)

Published 15 Feb 2023 in cs.AI, cs.LG, cs.SY, and eess.SY

Abstract: The ongoing transition to renewable energy is increasing the share of fluctuating power sources like wind and solar, raising power grid volatility and making grid operation increasingly complex and costly. In our prior work, we have introduced a congestion management approach consisting of a redispatching optimizer combined with a machine learning-based topology optimization agent. Compared to a typical redispatching-only agent, it was able to keep a simulated grid in operation longer while at the same time reducing operational cost. Our approach also ranked 1st in the L2RPN 2022 competition initiated by RTE, Europe's largest grid operator. The aim of this paper is to bring this promising technology closer to the real world of power grid operation. We deploy RL-based agents in two settings resembling established workflows, AI-assisted day-ahead planning and realtime control, in an attempt to show the benefits and caveats of this new technology. We then analyse congestion, redispatching and switching profiles, and elementary sensitivity analysis providing a glimpse of operation robustness. While there is still a long way to a real control room, we believe that this paper and the associated prototypes help to narrow the gap and pave the way for a safe deployment of RL agents in tomorrow's power grids.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com