Papers
Topics
Authors
Recent
Search
2000 character limit reached

SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast, Energy-Efficient Inference of Integer-Quantized CNNs

Published 14 Feb 2023 in cs.AR, cs.AI, cs.ET, and cs.LG | (2302.07036v1)

Abstract: The acceleration of a CNN inference task uses convolution operations that are typically transformed into vector-dot-product (VDP) operations. Several photonic microring resonators (MRRs) based hardware architectures have been proposed to accelerate integer-quantized CNNs with remarkably higher throughput and energy efficiency compared to their electronic counterparts. However, the existing photonic MRR-based analog accelerators exhibit a very strong trade-off between the achievable input/weight precision and VDP operation size, which severely restricts their achievable VDP operation size for the quantized input/weight precision of 4 bits and higher. The restricted VDP operation size ultimately suppresses computing throughput to severely diminish the achievable performance benefits. To address this shortcoming, we for the first time present a merger of stochastic computing and MRR-based CNN accelerators. To leverage the innate precision flexibility of stochastic computing, we invent an MRR-based optical stochastic multiplier (OSM). We employ multiple OSMs in a cascaded manner using dense wavelength division multiplexing, to forge a novel Stochastic Computing based Optical Neural Network Accelerator (SCONNA). SCONNA achieves significantly high throughput and energy efficiency for accelerating inferences of high-precision quantized CNNs. Our evaluation for the inference of four modern CNNs at 8-bit input/weight precision indicates that SCONNA provides improvements of up to 66.5x, 90x, and 91x in frames-per-second (FPS), FPS/W and FPS/W/mm2, respectively, on average over two photonic MRR-based analog CNN accelerators from prior work, with Top-1 accuracy drop of only up to 0.4% for large CNNs and up to 1.5% for small CNNs. We developed a transaction-level, event-driven python-based simulator for the evaluation of SCONNA and other accelerators (https://github.com/uky-UCAT/SC_ONN_SIM.git).

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.