Papers
Topics
Authors
Recent
Search
2000 character limit reached

Critical time-step size analysis and mass scaling by ghost-penalty for immersogeometric explicit dynamics

Published 14 Feb 2023 in math.NA and cs.NA | (2302.07019v1)

Abstract: In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and derive scaling relations between the critical time-step size and the cut-element size for various types of cuts. In particular, we focus on different approaches for the weak imposition of Dirichlet conditions: by penalty enforcement and with Nitsche's method. The stability requirement for Nitsche's method necessitates either a cut-size dependent penalty parameter, or an additional ghost-penalty stabilization term is necessary. Our findings show that both techniques suffer from cut-size dependent critical time-step sizes, but the addition of a ghost-penalty term to the mass matrix serves to mitigate this issue. We confirm that this form of `mass-scaling' does not adversely affect error and convergence characteristics for a transient membrane example, and has the potential to increase the critical time-step size by orders of magnitude. Finally, for a prototypical simulation of a Kirchhoff-Love shell, our stabilized Nitsche formulation reduces the solution error by well over an order of magnitude compared to a penalty formulation at equal time-step size.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.