Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divide and Save: Splitting Workload Among Containers in an Edge Device to Save Energy and Time (2302.06478v2)

Published 13 Feb 2023 in cs.DC and eess.IV

Abstract: The increasing demand for edge computing is leading to a rise in energy consumption from edge devices, which can have significant environmental and financial implications. To address this, in this paper we present a novel method to enhance the energy efficiency while speeding up computations by distributing the workload among multiple containers in an edge device. Experiments are conducted on two Nvidia Jetson edge boards, the TX2 and the AGX Orin, exploring how using a different number of containers can affect the energy consumption and the computational time for an inference task. To demonstrate the effectiveness of our splitting approach, a video object detection task is conducted using an embedded version of the state-of-the-art YOLO algorithm, quantifying the energy and the time savings achieved compared to doing the computations on a single container. The proposed method can help mitigate the environmental and economic consequences of high energy consumption in edge computing, by providing a more sustainable approach to managing the workload of edge devices.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aria Khoshsirat (5 papers)
  2. Giovanni Perin (11 papers)
  3. Michele Rossi (65 papers)
Citations (4)