Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Waterdrop Removal via Spatio-Temporal Fusion in Driving Scenes (2302.05916v3)

Published 12 Feb 2023 in cs.CV

Abstract: The waterdrops on windshields during driving can cause severe visual obstructions, which may lead to car accidents. Meanwhile, the waterdrops can also degrade the performance of a computer vision system in autonomous driving. To address these issues, we propose an attention-based framework that fuses the spatio-temporal representations from multiple frames to restore visual information occluded by waterdrops. Due to the lack of training data for video waterdrop removal, we propose a large-scale synthetic dataset with simulated waterdrops in complex driving scenes on rainy days. To improve the generality of our proposed method, we adopt a cross-modality training strategy that combines synthetic videos and real-world images. Extensive experiments show that our proposed method can generalize well and achieve the best waterdrop removal performance in complex real-world driving scenes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.