Papers
Topics
Authors
Recent
2000 character limit reached

Graph Neural Networks Go Forward-Forward

Published 10 Feb 2023 in cs.LG and cs.AI | (2302.05282v1)

Abstract: We present the Graph Forward-Forward (GFF) algorithm, an extension of the Forward-Forward procedure to graphs, able to handle features distributed over a graph's nodes. This allows training graph neural networks with forward passes only, without backpropagation. Our method is agnostic to the message-passing scheme, and provides a more biologically plausible learning scheme than backpropagation, while also carrying computational advantages. With GFF, graph neural networks are trained greedily layer by layer, using both positive and negative samples. We run experiments on 11 standard graph property prediction tasks, showing how GFF provides an effective alternative to backpropagation for training graph neural networks. This shows in particular that this procedure is remarkably efficient in spite of combining the per-layer training with the locality of the processing in a GNN.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 36 likes about this paper.