Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Generalized Canonical Correlation Analysis (2302.05277v1)

Published 10 Feb 2023 in stat.ML and cs.LG

Abstract: Regularized Generalized Canonical Correlation Analysis (RGCCA) is a general statistical framework for multi-block data analysis. RGCCA enables deciphering relationships between several sets of variables and subsumes many well-known multivariate analysis methods as special cases. However, RGCCA only deals with vector-valued blocks, disregarding their possible higher-order structures. This paper presents Tensor GCCA (TGCCA), a new method for analyzing higher-order tensors with canonical vectors admitting an orthogonal rank-R CP decomposition. Moreover, two algorithms for TGCCA, based on whether a separable covariance structure is imposed or not, are presented along with convergence guarantees. The efficiency and usefulness of TGCCA are evaluated on simulated and real data and compared favorably to state-of-the-art approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.