On Lipschitz solutions of mean field games master equations (2302.05218v1)
Abstract: We develop a theory of existence and uniqueness of solutions of MFG master equations when the initial condition is Lipschitz continuous. Namely, we show that as long as the solution of the master equation is Lipschitz continuous in space, it is uniquely defined. Because we do not impose any structural assumptions, such as monotonicity for instance, there is a maximal time of existence for the notion of solution we provide. We analyze three cases: the case of a finite state space, the case of master equation set on a Hilbert space, and finally on the set of probability measures, all in cases involving common noises. In the last case, the Lipschitz continuity we refer to is on the gradient of the value function with respect to the state variable of the player.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.