Papers
Topics
Authors
Recent
Search
2000 character limit reached

Online Planning of Uncertain MDPs under Temporal Tasks and Safe-Return Constraints

Published 10 Feb 2023 in cs.RO, cs.SY, and eess.SY | (2302.05152v1)

Abstract: This paper addresses the online motion planning problem of mobile robots under complex high-level tasks. The robot motion is modeled as an uncertain Markov Decision Process (MDP) due to limited initial knowledge, while the task is specified as Linear Temporal Logic (LTL) formulas. The proposed framework enables the robot to explore and update the system model in a Bayesian way, while simultaneously optimizing the asymptotic costs of satisfying the complex temporal task. Theoretical guarantees are provided for the synthesized outgoing policy and safety policy. More importantly, instead of greedy exploration under the classic ergodicity assumption, a safe-return requirement is enforced such that the robot can always return to home states with a high probability. The overall methods are validated by numerical simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.