Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Intra-Image Contrastive Learning for Weakly Supervised One-Step Person Search

Published 9 Feb 2023 in cs.CV | (2302.04607v1)

Abstract: Weakly supervised person search aims to perform joint pedestrian detection and re-identification (re-id) with only person bounding-box annotations. Recently, the idea of contrastive learning is initially applied to weakly supervised person search, where two common contrast strategies are memory-based contrast and intra-image contrast. We argue that current intra-image contrast is shallow, which suffers from spatial-level and occlusion-level variance. In this paper, we present a novel deep intra-image contrastive learning using a Siamese network. Two key modules are spatial-invariant contrast (SIC) and occlusion-invariant contrast (OIC). SIC performs many-to-one contrasts between two branches of Siamese network and dense prediction contrasts in one branch of Siamese network. With these many-to-one and dense contrasts, SIC tends to learn discriminative scale-invariant and location-invariant features to solve spatial-level variance. OIC enhances feature consistency with the masking strategy to learn occlusion-invariant features. Extensive experiments are performed on two person search datasets CUHK-SYSU and PRW, respectively. Our method achieves a state-of-the-art performance among weakly supervised one-step person search approaches. We hope that our simple intra-image contrastive learning can provide more paradigms on weakly supervised person search. The source code is available at \url{https://github.com/jiabeiwangTJU/DICL}.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.