Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Model-Agnostic Federated Learning over Networks (2302.04363v2)

Published 8 Feb 2023 in cs.LG

Abstract: We present a model-agnostic federated learning method for networks of heterogeneous data and models. The network structure reflects similarities between the (statistics of) local datasets and, in turn, their associated local("personal") models. Our method is an instance of empirical risk minimization, with the regularization term derived from the network structure of data. In particular, we require well-connected local models, forming clusters, to yield similar predictions on a common test set. The proposed method allows for a wide range of local models. The only restriction on these local models is that they allow for efficient implementation of regularized empirical risk minimization (training). For a wide range of models, such implementations are available in high-level programming libraries including scikit-learn, Keras or PyTorch.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com