Layered State Discovery for Incremental Autonomous Exploration (2302.03789v1)
Abstract: We study the autonomous exploration (AX) problem proposed by Lim & Auer (2012). In this setting, the objective is to discover a set of $\epsilon$-optimal policies reaching a set $\mathcal{S}L{\rightarrow}$ of incrementally $L$-controllable states. We introduce a novel layered decomposition of the set of incrementally $L$-controllable states that is based on the iterative application of a state-expansion operator. We leverage these results to design Layered Autonomous Exploration (LAE), a novel algorithm for AX that attains a sample complexity of $\tilde{\mathcal{O}}(LS{\rightarrow}{L(1+\epsilon)}\Gamma_{L(1+\epsilon)} A \ln{12}(S{\rightarrow}_{L(1+\epsilon)})/\epsilon2)$, where $S{\rightarrow}_{L(1+\epsilon)}$ is the number of states that are incrementally $L(1+\epsilon)$-controllable, $A$ is the number of actions, and $\Gamma_{L(1+\epsilon)}$ is the branching factor of the transitions over such states. LAE improves over the algorithm of Tarbouriech et al. (2020a) by a factor of $L2$ and it is the first algorithm for AX that works in a countably-infinite state space. Moreover, we show that, under a certain identifiability assumption, LAE achieves minimax-optimal sample complexity of $\tilde{\mathcal{O}}(LS{\rightarrow}{L}A\ln{12}(S{\rightarrow}{L})/\epsilon2)$, outperforming existing algorithms and matching for the first time the lower bound proved by Cai et al. (2022) up to logarithmic factors.
- Liyu Chen (22 papers)
- Andrea Tirinzoni (24 papers)
- Alessandro Lazaric (78 papers)
- Matteo Pirotta (45 papers)