Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite element grad grad complexes and elasticity complexes on cuboid meshes (2302.03783v1)

Published 7 Feb 2023 in math.NA and cs.NA

Abstract: This paper constructs two conforming finite element grad grad and elasticity complexes on the cuboid meshes. For the finite element grad grad complex, an $H2$ conforming finite element space, an $\boldsymbol{H}(\operatorname{curl}; \mathbb{S})$ conforming finite element space, an $\boldsymbol{H}(\operatorname{div}; \mathbb{T})$ conforming finite element space and an $\boldsymbol{L}2$ finite element space are constructed. Further, a finite element complex with reduced regularity is also constructed, whose degrees of freedom for the three diagonal components are coupled. For the finite element elasticity complex, a vector $\boldsymbol{H}1$ conforming space and an $\boldsymbol{H}(\operatorname{curl}\operatorname{curl}{T}; \mathbb{S})$ conforming space are constructed. Combining with an existing $\boldsymbol{H}(\operatorname{div}; \mathbb{S}) \cap \boldsymbol{H}(\operatorname{div}\operatorname{div}; \mathbb{S})$ element and $\boldsymbol{H}(\operatorname{div}; \mathbb{S})$ element, respectively, these finite element spaces form two different finite element elasticity complexes. The exactness of all the finite element complexes is proved.

Citations (1)

Summary

We haven't generated a summary for this paper yet.