Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Inference for Finite Population Sampling-Based Prevalence Estimation with Misclassification Errors (2302.03558v2)

Published 7 Feb 2023 in stat.ME, math.ST, and stat.TH

Abstract: Epidemiologic screening programs often make use of tests with small, but non-zero probabilities of misdiagnosis. In this article, we assume the target population is finite with a fixed number of true cases, and that we apply an imperfect test with known sensitivity and specificity to a sample of individuals from the population. In this setting, we propose an enhanced inferential approach for use in conjunction with sampling-based bias-corrected prevalence estimation. While ignoring the finite nature of the population can yield markedly conservative estimates, direct application of a standard finite population correction (FPC) conversely leads to underestimation of variance. We uncover a way to leverage the typical FPC indirectly toward valid statistical inference. In particular, we derive a readily estimable extra variance component induced by misclassification in this specific but arguably common diagnostic testing scenario. Our approach yields a standard error estimate that properly captures the sampling variability of the usual bias-corrected maximum likelihood estimator of disease prevalence. Finally, we develop an adapted Bayesian credible interval for the true prevalence that offers improved frequentist properties (i.e., coverage and width) relative to a Wald-type confidence interval. We report the simulation results to demonstrate the enhanced performance of the proposed inferential methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.