Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ClueGAIN: Application of Transfer Learning On Generative Adversarial Imputation Nets (GAIN) (2302.03140v1)

Published 6 Feb 2023 in cs.LG

Abstract: Many studies have attempted to solve the problem of missing data using various approaches. Among them, Generative Adversarial Imputation Nets (GAIN) was first used to impute data with Generative Adversarial Nets (GAN) and good results were obtained. Subsequent studies have attempted to combine various approaches to address some of its limitations. ClueGAIN is first proposed in this study, which introduces transfer learning into GAIN to solve the problem of poor imputation performance in high missing rate data sets. ClueGAIN can also be used to measure the similarity between data sets to explore their potential connections.

Summary

We haven't generated a summary for this paper yet.