Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Space Bayesian Optimization with Latent Data Augmentation for Enhanced Exploration (2302.02399v4)

Published 5 Feb 2023 in cs.LG

Abstract: Latent Space Bayesian Optimization (LSBO) combines generative models, typically Variational Autoencoders (VAE), with Bayesian Optimization (BO) to generate de-novo objects of interest. However, LSBO faces challenges due to the mismatch between the objectives of BO and VAE, resulting in poor exploration capabilities. In this paper, we propose novel contributions to enhance LSBO efficiency and overcome this challenge. We first introduce the concept of latent consistency/inconsistency as a crucial problem in LSBO, arising from the VAE-BO mismatch. To address this, we propose the Latent Consistent Aware-Acquisition Function (LCA-AF) that leverages consistent points in LSBO. Additionally, we present LCA-VAE, a novel VAE method that creates a latent space with increased consistent points through data augmentation in latent space and penalization of latent inconsistencies. Combining LCA-VAE and LCA-AF, we develop LCA-LSBO. Our approach achieves high sample-efficiency and effective exploration, emphasizing the significance of addressing latent consistency through the novel incorporation of data augmentation in latent space within LCA-VAE in LSBO. We showcase the performance of our proposal via de-novo image generation and de-novo chemical design tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.