Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

AONN: An adjoint-oriented neural network method for all-at-once solutions of parametric optimal control problems (2302.02076v1)

Published 4 Feb 2023 in math.OC

Abstract: Parametric optimal control problems governed by partial differential equations (PDEs) are widely found in scientific and engineering applications. Traditional grid-based numerical methods for such problems generally require repeated solutions of PDEs with different parameter settings, which is computationally prohibitive especially for problems with high-dimensional parameter spaces. Although recently proposed neural network methods make it possible to obtain the optimal solutions simultaneously for different parameters, challenges still remain when dealing with problems with complex constraints. In this paper, we propose AONN, an adjoint-oriented neural network method, to overcome the limitations of existing approaches in solving parametric optimal control problems. In AONN, the neural networks are served as parametric surrogate models for the control, adjoint and state functions to get the optimal solutions all at once. In order to reduce the training difficulty and handle complex constraints, we introduce an iterative training framework inspired by the classical direct-adjoint looping (DAL) method so that penalty terms arising from the Karush-Kuhn-Tucker (KKT) system can be avoided. Once the training is done, parameter-specific optimal solutions can be quickly computed through the forward propagation of the neural networks, which may be further used for analyzing the parametric properties of the optimal solutions. The validity and efficiency of AONN is demonstrated through a series of numerical experiments with problems involving various types of parameters.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.